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Appendix E

Partition Coefficients For Chromium(VI)
E.1.0 Background

The review of chromium K, data obtained for a number of soils (summarized in Table E.1)
indicated that a number of factors influence the adsorption behavior of chromium. These factors
and their effects on chromium adsorption on soils and sediments were used as the basis for
generating a look-up table. These factors are:

o Concentrations of Cr(IIl) in soil solutions are typically controlled by
dissolution/precipitation reactions therefore, adsorption reactions are not significant in
soil Cr(III) chemistry.

* Increasing pH decreases adsorption (decrease in K;) of Cr(VI) on minerals and soils. The
data are quantified for only a limited number of soils.

* The redox state of the soil affects chromium adsorption. Ferrous iron associated with
iron oxide/hydroxide minerals in soils can reduce Cr(VI) which results in precipitation
(higher K,). Soils containing Mn oxides oxidize Cr(III) into Cr(VI) form thus resulting
in lower K, values. The relation between oxide/hydroxide contents of iron and
manganese and their effects on K, have not been adequately quantified except for a few
soils.

» The presence of competing anions reduce Cr(VI) adsorption. The inhibiting effect varies
in the order HPOZ, H,PO; >>S0O; CO;/HCO; CI', NO;". These effects have been
quantified as a function of pH for only 2 soils.

The factors which influence chromium adsorption were identified from the following sources of
data. Experimental data for Cr(VI) adsorption onto iron oxyhydroxide and aluminum hydroxide
minerals (Davis and Leckie, 1980; Griffin et al., 1977; Leckie et al., 1980; Rai et al., 1986)
indicate that adsorption increases with decreasing pH over the pH range 4 to 10. Such
adsorption behavior is explained on the basis that these oxides show a decrease in the number of
positively charged surface sites with increasing pH. Rai et al. (1986) investigated the adsorption
behavior of Cr(VI) on amorphous iron oxide surfaces. The experiments were conducted with
initial concentrations of 5x10° M Cr(VI). The results showed very high K, values (478,630
ml/g) at lower pH values (5.65), and lower K values (6,607 ml/g) at higher pH values (7.80). In
the presence of competing anions (SO,: 2.5x10~ M, solution in equilibrium with 3.5x10~ atm
CO,), at the same pH values, the observed K, values were 18,620 ml/g and 132 ml/g respectively
leading to the conclusion that depending on concentration competing anions reduce Cr(VI)
adsorption by at least an order of magnitude. Column experiments on 3 different soils conducted
by Selim and Amacher (1988) confirmed the influence of soil pH on Cr(VI) adsorption. Cecil,
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Windsor, and Olivier soils with pH values of 5.1, 5.4, and 6.4 exhibited chromium K, values in
the range ~9-100 ml/g, 2-10 ml/g, and ~1-3 ml/g respectively. Adsorption of Cr(VI) on

4 different subsoils was studied by Rai et al. (1988). The authors interpreted the results of these
experiments using surface complexation models. Using their adsorption data, we calculated the
K, values for these soils. The data showed that 3 of the 4 soils studied exhibited decreasing K,
values with increasing pH. The K values for these soils were close to 1 ml/g at higher pH
values (>8). At lower pH values (about 4.5) the K values were about 2 to 3 orders of magnitude
greater than the values observed at higher pH values One of the soils with a very high natural
pH value (10.5) however did not show any adsorption affinity (K, < 1 ml/g) for Cr(VI).

The data regarding the effects of soil organic matter on Cr(VI) adsorption are rather sparse. In

1 study, Stollenwerk and Grove (1985) evaluated the effects of soil organic matter on adsorption
of Cr(VI). Their results indicated that organic matter did not influence Cr(VI) adsorption
properties. In another study, the Cr(VI) adsorption properties of an organic soil was examined
by Wong et al. (1983). The chromium adsorption measurements on bottom, middle, and top
layers of this soil produced K, values of 346, 865, and 2,905 ml/g respectively. Also, another K,
measurement using an organic-rich fine sandy soil from the same area yielded a value of 1,729
ml/g.

A series of column (lysimeter) measurements involving Cr(VI) adsorption on 4 different layers
of a sandy soil yielded average K, values that ranged from 6 to 263 ml/g (Sheppard et al., 1987).
These measurements showed that coarse-textured soils tend to have lower K, values as compared
to fine-textured soils such as loam (K, ~ 1,000 ml/g, Sheppard and Sheppard, 1987).
Stollenwerk and Grove (1985) examined Cr(VI) adsorption on an alluvium from an aquifer in
Telluride, Colorado. A K, value of 5 ml/g was obtained for Cr(VI) adsorption on this alluvium.
Removing organic matter from the soil did not significantly affect the K, value. However,
removing iron oxide and hydroxide coatings resulted in a K, value of about 0.25 leading the
authors to conclude that a major fraction of Cr(VI) adsorption capacity of this soil is due to its
iron oxide and hydroxide content. Desorption experiments conducted on Cr adsorbed soil aged
for 1.5 yrs indicated that over this time period, a fraction of Cr(VI) had been reduced to Cr(III)
by ferrous iron and had probably coprecipitated with iron hydroxides.

Studies by Stollenwerk and Grove (1985) and Sheppard et al. (1987) using soils showed that K
decreases as a function of increasing equilibrium concentration of Cr(VI). Another study
conducted by Rai et al. (1988) on 4 different soils confirmed that K, values decrease with
increasing equilibrium Cr(VI) concentration.

Other studies also show that iron and manganese oxide contents of soils significantly affect the
adsorption of Cr(VI) on soils (Korte et al., 1976). However, these investigators did not publish
either K, values or any correlative relationships between K, and the oxide contents. The
adsorption data obtained by Rai et al. (1988) also showed that quantities of sodium dithionite-
citrate-bicarbonate (DCB) extractable iron content of soils is a good indicator of a soil’s ability
to reduce Cr(VI) to Cr(III) oxidation state. The reduced Cr has been shown to coprecipitate with
ferric hydroxide. Therefore, observed removal of Cr(VI) from solution when contacted with
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chromium-reductive soils may stem from both adsorption and precipitation reaction. Similarly,
Rai et al. (1988) also showed that certain soils containing manganese oxides may oxidize Cr(III)
into Cr(VI). Depending on solution concentrations, the oxidized form (VI) of chromium may
also precipitate in the form of Ba(S,Cr)O, Such complex geochemical behavior chromium in
soils implies that depending on the properties of a soil, the measured K, values may reflect both
adsorption and precipitation reactions.

An evaluation of competing anions indicated that Cr(VI) adsorption was inhibited to the greatest
extent by HPO; and H,PO; ions and to a very small extent by Cl" and NO, ions. The data
indicate that Cr(VI) adsorption was inhibited by anions in order of HPO;", H,PO; >> SO; >> CI’,
NO; (Leckie et al., 1980; MacNaughton, 1977; Rai et al., 1986; Rai ef al., 1988; Stollenwerk and
Grove, 1985).
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E.2.0 Approach

The approach used to develop the look-up table was to identify the key parameters that control Cr(VI)
adsorption reactions. From the data of Rai ef al. (1988) and other studies of Cr(VI) adsorption on soils pH
was identified as a key parameter. The data show (Table E.2) that the K, values are significantly higher at
lower pH values and decline with increasing pH. Also, K, values for soils show a wider range at lower pH,
but values for all soils converge as pH value approaches about 8. Another parameter which seems to
influence soil adsorption of Cr(VI) is the capacity of soils to reduce Cr(VI) to Cr(IIl). Leckie et al. (1980)
and Rai et al. (1988) showed that iron oxides in the soil reduce Cr(VI) to Cr(Ill) and precipitate Cr(IIl) as a
(Fe,Cr)(OH), mineral. Also, studies conducted by Rai ef al. (1988) show that DCB extractable iron content
is a good indicator as to whether a soil can reduce significant quantities of Cr(VI) which results in higher K,
values. It is important to note the total iron oxide content is a poor indicator of a soil’s Cr(VI) reducing
capacity and that DCB extractable iron better represents the fraction of iron content that would reduce
Cr(VI) to Cr(Ill). The data indicated that Holton/Cloudland soil with the highest concentrations of DCB
extractable iron (0.435 mmol/g) exhibited higher K, values than other soils which did not show an
observable Cr(VI) reduction tendency.

Based on this information, 4 ranges of pH, which encompass the pH range of most natural soils, were
selected for the look-up table (Table E.3). Within each pH range, 3 ranges of DCB extractable iron content
were selected to represent the categories of soils that definitely reduce (>0.3 mmol/g), probably reduce (0.26
to 0.29 mmol/g), and do not reduce (<2.5 mmol/g) Cr(VI) to Cr(III) form. The range of K, values to be
expected within each of the 12 categories was estimated from the data listed in Table E.2. The variations of
K, values as a function of pH and DCB extractable iron as independent variables based on experimental data
(Table E.2) is also shown as a 3-dimensional graph (Figure E.1). The graph indicates that soils with lower
pH values and higher DCB extractable iron contents exhibit greater adsorption (higher K,) of Cr(VI). At
higher pH values (>7), Cr(VI) adsorption tends to be very low (very low K values) irrespective of DCB
extractable iron content. Similarly, soils which contain very low DCB extractable iron, adsorb very little
Cr(VI) (very low K, values) irrespective of soil pH values.

Additionally, Cr(VI) adsorption studies show that the presence of competing anions such as HPOZ", H,PO;,
SO;, CO3, and HCO; will reduce the K, values as compared to a noncompetitive adsorption process. The
only available data set that can be used to assess the competing anion effect was developed by Rai et al.
(1988). However, they used fixed concentrations of competing anions namely SO7, CO3’, and HCO; (fixed
through a single selected partial pressure of CO,) concentrations (Tables E.4 and E.5). Among these
competing anions, SO3 at about 3 orders of magnitude higher concentrations (2 x 10 M or 191.5 mg/1) than
Cr(VI) concentration depressed Cr(VI) K, values roughly by an order of magnitude as compared to
noncompetitive adsorption. Therefore, the look-up table was developed on the assumption that K, values of
Cr(VI) would be reduced as soluble SO3 concentrations increase from 0 to 2x10° M (or 191.5 mg/l).
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Figure E.1.

Variation of K, for Cr(VI) as a function of pH and DCB extractable iron
content without the presence of competing anions.

E.3.0 Data Set for Soils

The data set used to develop the look-up table is from the adsorption data collected by Rai et al. (1988). The
adsorption data for Cr(VI) as a function of pH developed for 4 well-characterized soils were used to
calculate the K, values (Table E.2). All 4 soil samples were obtained from subsurface horizons and
characterized as to their pH, texture, CEC, organic and inorganic carbon contents, surface areas, extractable
(hydroxylamine hydrochloride, and DCB) iron, manganese, aluminum, and silica, KOH extractable
aluminum and silica, and clay mineralogy. Additionally, Cr oxidizing and reducing properties of these soils
were also determined (Rai et al., 1988). Effects of competing anions such as sulfate and carbonate on Cr(VI)
adsorption were determined for 2 of the soils (Cecil/Pacolet, and Kehoma). The K values from competitive
anion experiments were calculated (Tables E.4 and E.5) and used in developing the look-up table

(Table E.3).
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Table E.4. Data from Rai et al. (1988) on effects of competing anions on Cr(VI)
adsorption on Cecil/Pacolet soil.

Cr(VD)' Cr(VI) + Sulfate' Cr(VI) + Carbonate'
pH | -logC | -logS K, pH | -logC | -logS K, pH -logC | -logS K,
(mol/m*) |(mol/kg) | (ml/g) (mol/m®) [(mol/kg) | (ml/g) (mol/m®) |(mol/kg)| (ml/g)
9.26 3.05 5.66 2 8.92 3.05 6.27 1 9.62 3.05 6.88 0
9.29 3.05 5.88 1 8.38 3.07 5.71 2 9.15 3.05 6.79 0
8.57 3.11 5.34 6 8.38 3.04 5.70 2 9.01 3.06 6.35 1
7.80 3.30 5.00 20 7.70 3.12 5.28 7 7.92 3.06 6.12 1
7.41 3.44 4.89 35 7.67 3.12 5.28 7 7.95 3.06 6.10 1
7.38 3.46 4.88 38 7.37 3.19 5.11 12 7.53 3.08 5.85 2
6.99 3.66 4.81 71 7.24 3.23 5.09 14 7.52 3.07 6.06 1
6.94 3.65 4.81 69 6.85 3.34 4.95 24 7.19 3.12 5.55 4
6.67 3.79 4.78 102 16.76 3.37 4.96 26 7.31 3.10 5.67 3
6.49 3.79 4.78 102 16.58 3.43 4.92 32 7.22 3.12 5.55 4
6.19 3.99 4.75 174 ]6.56 3.34 4.95 25 6.99 3.13 5.48 4
6.16 3.94 4.75 155 ]6.15 3.55 4.85 50 6.70 3.22 5.21 10
5.89 4.08 4.74 219 16.15 3.51 4.88 43 6.68 3.21 5.24 9
5.84 4.06 4.74 209 |5.75 3.58 4.82 58 5.84 3.65 4.87 60
5.46 4.19 4.73 288 15.79 3.56 4.86 51 6.08 3.54 491 43
5.49 421 4.73 302 [5.35 3.60 4.83 59 5.12 4.11 478 214
4.98 4.33 4.72 407 15.33 3.59 4.84 57 5.12 4.14 4.78 229
4.98 432 4.72 3908 [4.68 3.55 4.86 49 4.76 4.20 4.78 263
4.49 4.52 4.71 646 14.69 3.47 4.86 41 4.75 4.11 478 214
4.49 4.39 4.72 468 4.33 4.39 4.76 427
4.34 4.37 4.77 398
' Cr(VI) concentration: 10° M, Sulfate Concentration: 10*" M, CO, : 107¢ atm.
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Table E.5. Data from Rai et al. (1988) on effects of competing anions on

Cr(VI) adsorption on Kenoma soil.

Cr(VD! Cr(VI) + Sulfate + Carbonate’
pH -log C -log S K, pH -log C -log S K,
(mol/m®) | (mol/kg) | (ml/g) (mol/m*) | (mol/kg) | (ml/g)

8.42 3.03 6.25 1 7.49 3.06 6.22 1
7.71 3.05 5.84 2 7.42 3.06 6.35 1
7.70 3.04 5.97 1 7.3 3.07 5.98 1
7.35 3.09 5.54 4 7.38 3.08 5.9 2
7.40 3.08 5.59 3 7.08 3.08 5.83 2
7.20 3.03 5.36 5 6.93 3.1 5.64 3
7.16 3.13 5.37 6 6.49 3.15 5.43 5
6.89 3.16 5.27 8 6.52 3.16 5.39 6
6.92 3.15 5.29 7 6.32 3.17 5.33 7
6.70 3.23 5.13 13 6.32 3.18 5.31 7
6.47 3.26 5.09 15 5.97 3.23 5.21 10
6.02 3.36 4.98 24 5.97 3.21 5.25 9
6.02 3.35 4.99 23 5.7 3.23 5.2 11
5.61 3.39 4.95 28 5.69 3.24 5.18 11
5.62 3.40 4.95 28 5.54 3.24 5.19 11

5.52 3.25 5.18 12

5.03 3.18 5.32 7

5.02 3.21 5.26 9

Cr(VI) concentration: 10° M, Sulfate Concentration: 10" M, CO, : 107¢ atm.
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